Methane to Markets

Landfill Biogas Project Financing and Development
Outline

- Review of Landfill Biogas Project Components
- Revenue Sources
- Project Costs
- Financial Analyses
- Project Development Challenges
- Recommendations
Landfill Biogas Project Components

- Estimation of biogas potential
- Utilization options
 - Electrical generation
 - Industrial use
 - Treatment of biogas
- Financing
- Construction
- Collection and/or flaring
- Monitoring
 - Emission reductions
 - Energy sales
Estimation of Biogas Potential

- Observation and analysis of landfill operations
- Collection of accurate data
- Use of landfill biogas modeling
 - Selection of appropriate model and inputs based on landfill characteristics
 - Close scrutiny of model results via comparison with results from other landfills (if possible)
- Development of multi-year biogas generation and recovery estimates.
 - Conservative but realistic?
 - Be aware of over-estimation
Multi-year Biogas Projections

- Biogas methane is the overall asset
- Recovery estimates are basis of project economic analyses
- Account for declining recovery and subsequent collection system expansions
Example Biogas Projection

Figure A-1. Landfill Gas Generation and Recovery Projection
Collection and Flaring

- Required for both emission reduction and utilization projects
- If not required to collect, consider economics of collection system design
 - Location of wells in deeper areas
 - May not install wells in shallow or old areas
 - Maximize biogas recovery per well
Utilization

- Evaluation of project options
- Options may be limited by location
- Biogas treatment needed?
 - Water
 - Siloxanes
 - Reduced sulfur compounds
 - Compression for high-pressure end use?
- Consider phased project approach
 - Phase 1. Collection and flaring for emission reductions
 - Phase 2. Utilization after establishing biogas collection
Monitoring

- Emission reduction projects
 - Biogas flow meter (m³/h)
 - Gas analyzer (% methane, % nitrogen, etc.)
 - Biogas temperature and pressure
 - Control device operation (temperature, exhaust gas analyzer, etc.)
 - Electrical use by system

- Energy projects
 - Biogas flow
 - Electrical generation

- Pay attention to calibration and maintenance requirements for greenhouse gas market programs
Revenue Sources

- Emission reductions
- Energy sales
 - MWh electric
 - MWh thermal
- Incentives
 - Grants
 - Low interest loans
 - Economic development programs
Revenue - Emission Reductions

- Review UNFCC ACM00001 for Guidance
- Determine project baseline
- Estimate annual methane recovery
 - Total cubic meters of biogas recovered * % methane * density of methane
- Selection of control device and associated destruction efficiency
 - Open flares 50%
 - Enclosed flares 90%
- Account for project energy use (electricity to operate blower)
Revenue – Emission Reductions (Continued)

- Calculate Annual Emission Reductions
- \[ER = (MD_p - MD_b) \times GWP - (EL \times CEF) \]
 - \(ER \) = Emission reductions
 - \(MD_p \) = Methane destroyed by project
 - \(MD_b \) = Methane that would have been destroyed in absence of project
 - \(GWP \) = Global Warming Potential for Methane
 - \(EL \) = Electricity use by project
 - \(CEF \) = \(CO_2 \) emissions per kWh of electricity generation
Revenue – Energy Sales

- Calculate annual biogas recovery and associated energy value based on project type
 - MWh (thermal)
 - MWh (electrical)
- Evaluate expected unit price (zloty/MWh)
- Estimate annual revenue from energy sales
Revenue - Incentives

- Methane to Markets Grants
- Low interest loans for energy or environmental projects?
- Renewable energy tax credits/pREFERRED pricing for renewable energy generation?
- Economic development incentives if utilization project
 - Creates employment
 - Supports local industry by providing low-cost source of energy
Project Costs

- Infrastructure
- Operations
- Administrative
Infrastructure Costs

- Gas collection system
 - Account for future expansions if landfill is still in operation
- Blower/flare
- Utilization equipment
 - Engine, turbine
 - Pipeline
 - Treatment
- Monitoring equipment
Operational Costs

- **Scheduled Maintenance**
 - Biogas analyses at each well
 - Balancing of collection system
 - Leachate removal?
 - Blower/flare lubrication and maintenance
 - Utilization system maintenance
 - Monitoring system maintenance

- **Unscheduled Maintenance**
 - Component failures
 - Impacts of nature
 - Conflict with landfill operations (e.g., truck runs over wellhead)
Administrative Costs

- Permitting and local zoning
- Political issues
- Legal/ownership issues
- Emission reduction projects
 - Project Design Documents
 - Validation and verification
- Utilization projects
 - Contracts
Typical Electric Project Components & Costs

- 3 MW engine project for 15 years:
 - Installed engine and gas treatment skids
 - Installed capital cost = ~$5,100,000
 - Interconnect
 - ~$250,000 (approximate – many variables at play)
 - Annual operation & maintenance
 - Cost = ~$570,000/year

- Total capital cost = ~$5.35 million
- Total annual cost = ~$570,000
Typical Direct Use Components & Costs

- 800 scfm project for 15 years:
 - Gas compression & treatment
 - Installed capital cost = ~$1,040,000
 - Pipeline
 - Installed capital cost = ~$330,000/mile
 - Annual operation & maintenance
 - Cost = ~$50,000/year
 - End-of-pipe combustion equipment retrofits, if needed

- Total capital cost (5-mile) = ~$2.69 million
- Total O&M cost = ~$750,000
Financial Analyses

- Establish Cost and Revenue Projections
- Create Cash Flow Model
- Consideration of Project Options
- Develop Business Plan
Cost and Revenue Projections

- Estimated biogas recovery
- Projected revenue
 - Emission reductions
 - Energy
- Projected costs
 - Infrastructure
 - Operations
 - Administrative
- Applicable project incentives
 - Tax credits
 - Grants
Cash Flow Model

- Costs and revenues should be calculated and compared on a year by year basis over the expected life of the project.

- Calculations to include:
 - project performance over time
 - escalation of project expenses and energy prices
 - financing costs
 - tax considerations
Consideration of Project Options

- Develop cash flow model for all reasonable project options
- Compare results to determine best project option
 - Annual cash flows
 - Net present value
 - Debt coverage
 - Rate of Return
Consideration of Non-Price Factors

- Accuracy of project option assumptions
- Environmental performance
- Reliability of project option components
Project Financing

- Typically, biogas projects require financing to develop project infrastructure
- Investors and banks do not like to lose money when financing projects
- You need to demonstrate project financial performance and risk
- Detailed project cash flow analyses and supporting assumptions are critical
Challenges to Implementing Landfill Biogas Projects

- **Getting the Rights to the Biogas**
 - Unclear ownership
 - Unduly high expectations by landfill owners
 - Arduous or unclear procurement procedures
Challenges to Implementing Landfill Biogas Projects

- Estimating Recoverable Landfill Biogas
 - Finding reliable input data
 - Waste characterization
 - Waste disposal history
 - Projected future waste receipts

Garbage in = Garbage out!
Challenges to Implementing Landfill Biogas Projects

- Over Estimating Recoverable Landfill Gas
 - The US EPA LANDGEM model estimates gas generation - not recovery
 - Many site-specific conditions will impact recovery
 - Site geometry
 - Leachate
 - Cover
 - Operations
 - Vandalism
Challenges to Implementing Landfill Biogas Projects

- Poor System Design
 - “Watering-in” of wells and collection system
 - Corrosion and siloxane build-up on system components
 - Increased vandalism
 - Increased costs
Challenges to Implementing Landfill Biogas Projects

- Other Technical
 - Incomplete system installation
 - Poor system operations & maintenance
 - Scavengers
Challenges to Implementing Landfill Biogas Projects

- Technical Issues
 - If you over-estimate the recoverable gas you will not meet your investment expectations
 - If you have poor system design and operations, you will collect even less of the recoverable gas that already is constrained by site-specific factors
Recommendations

- **For Landfill Owners**
 - Be realistic – there is a lot of risk in these projects for the investor - they are not gold mines!
 - Simplify and speed up procurement processes
 - Help your investor implement the project in any way you can – don’t be an impediment
 - The sooner the investor makes money – the sooner you will!
Recommendations

- **For Investors**
 - Pay attention to details and assumptions
 - Be realistic about project costs, revenues, and schedules
 - Run financial sensitivity scenarios to determine project boundaries
 - Avoid deals that are overly complex
Recommendations

- Scrutinize biogas generation projections
- Work with reputable construction and engineering firms
- Obtain written quotes for costs
- Include price and schedule contingencies
- Compare multiple sources of financing